## Radiation Hard, Hermetic, Low Cost Packaging for Microelectronics, MEMS and Optoelectronics

#### Amaresh Mahapatra and Robert Mansfield Linden Photonics Inc. James J. Foshee AFRL Wright Patterson AFB

#### Phase 1 SBIR Contract No.: HQ0006-03-C-0094

Contact information: Tel.: 978-392-7985 am\_lindenphotonics@msn.com

#### **Key Satellite Programs Present and Planned**

| Geodesy | Meteorology                                                                                                                                                                                                                                 | Communications                                                                                                                                                                                                                                                                                                                                             | Navigation                               | Early Warning<br>and Attack<br>Assessment                                                                                                                                                                                                                                      | Surveillance and Reconnaissance                                                                                                                                                                                                                                                                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Landsat | Defense<br>Meteorological<br>Satellite Program<br>(DMSP)<br>National Polar-<br>orbiting<br>Operational<br>Environmental<br>Satellite System<br>(NPOESS; 833<br>km, 98.7 degree<br>inclination polar<br>orbit/high radiation<br>environment) | Defense Satellite<br>Communications System<br>(DSCS)<br>Ultra-High Frequency<br>Follow-on (UFO)<br>Milstar (Initiated 1980s,<br>Geosynchronous orbit)<br>Global Broadcast<br>System (GBS)<br>Advanced Extremely<br>High Frequency System<br>(AEHF, Lockheed<br>Martin)<br>Wideband Gapfiller<br>Satellites (WGS)<br>Mobile User Objective<br>System (MUOS) | Global<br>Positioning<br>System<br>(GPS) | Defense Support<br>System (DSP,<br>Early Warning<br>System deployed<br>for about 30 years)<br>Space-Based Infra-<br>Red System<br>(SBIRs High, to<br>monitor and track<br>enemy missiles)<br>Space Tracking<br>and Surveillance<br>System (STSS,<br>Northrop<br>Grumman, 2002) | Keyhole (KH) Series<br>Signals Intelligence<br>Satellite (SIGINT)<br>Future Imagery<br>Architecture (FIA,<br>Boeing, Initiated<br>in 1999)<br>Integrated Overhead<br>SIGINT Architecture<br>(IOSA)<br>Space-Based Radar<br>(Complements<br>terrestrial radar such as<br>AWACS and Joint<br>STARS) |

Source: Northrop Grumman Review, Summer Issue, 2003

## Packaging Technology Requirements

### • RadHard

- Hermetic
- EMI Shielding
- Light Weight
- Manufacturable
- Low cost
- COTS based

•Develop low cost hermetic packaging that will survive space radiation for decades using liquid crystal polymers

Linden Business Strategy

•Enable manufacturing technology for the above

## Barrier Properties of Liquid Crystal Polymers (LCP)

| Material                        | Water vapor<br>transmission rate<br>(gm/m²/day/barr) | O <sub>2</sub> transmission rate<br>(cm³/m²/day/barr) | Optical<br>properties in<br>visible<br>spectrum |
|---------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|
| PET (polyester)                 | 28                                                   | 78                                                    | transparent                                     |
| Teflon                          | 5.0                                                  |                                                       | transparent                                     |
| Parylene                        | 3.3                                                  | 112                                                   | transparent                                     |
| Liquid crystal polymer<br>(LCP) | 0.2                                                  | 1.1                                                   | Opaque                                          |

#### **Chemical resistance of LCP**

Chemical Resistance, Rating: + Resistant –less than 2% change in weight and dimension, less than 5% change in mechanical properties.

| Acetic acid (100%)         |                     | 30 days/118°C | A950 | + | Chlorine gas             | 180 days/23°C | A950          | +        |   |
|----------------------------|---------------------|---------------|------|---|--------------------------|---------------|---------------|----------|---|
|                            |                     |               |      |   | _                        |               | A130          | +        |   |
| Acetone                    | 180 days/56°C       | A950          | +    |   |                          |               | A625          | +        |   |
|                            |                     | A130          | +    |   | Chlorine/water           | 180 days/23°C | A950          | +        |   |
|                            |                     | A625          | +    |   | (saturated soluti        | on)           |               | A130     | + |
| Acetonitrile               | 120 days/23°C       | A625          | +    |   | (                        | - /           |               |          |   |
| Brake fluid                | 30 days/121°C       | A130          | 0    |   |                          |               | A625          | +        |   |
| (Castrol® TLX S            | 988C)               |               | A950 | + | Chromic acid (50         | 0%)           | 90 days/50°C  | A625     | + |
|                            |                     | B950          | +    |   |                          | 180 days/50°C | A950          | +        |   |
|                            |                     | C950          | +    |   |                          |               | A130          | 0        |   |
|                            | 90 days/121°C       | A130          | _    |   |                          |               | A625          | 0        |   |
| Brake fluid                | 90 days/121°C       | A130          | 0    |   |                          | 30 days/70°C  | A950          | +        |   |
| (NAPA® brand               | (NAPA® brand DOT-3) |               |      |   |                          |               | A130          | +        |   |
| Caustic soda solution (5%) |                     | 90 days/23°C  | A130 | + | Chromic acid (70%) 30 da |               | 30 days/88°C  | A950     | + |
|                            |                     | A625          | +    |   |                          |               | A130          | 0        |   |
|                            | 180 days/23°C       | A950          | +    |   |                          |               | A625          | 0        |   |
|                            |                     | A130          | 0    |   | Dimethyl formamic        | de            | 180 days/66°C | A950     | + |
|                            |                     | A625          | 0    |   |                          |               |               |          |   |
|                            |                     | A515          | +    |   |                          |               | A130          | +        |   |
|                            |                     |               |      |   |                          |               | A625          | +        |   |
| Caustic soda so            | olution (10%) 180 d | ays/23°C      | A950 | + | Diphenylaming            | 180 days/66°C | 4950          | <b>_</b> |   |
|                            |                     |               |      |   | Diprienylamine           | 100 days/00 C | A330<br>A130  | +        |   |
|                            | A130                | +             |      |   |                          |               | A625          | +        |   |
|                            | A625                | 0             |      |   | +                        |               |               |          |   |
|                            | A515                | +             |      |   |                          |               | C130          | +        |   |
| 30 days/88°C               | A950                | 0             |      |   | Ethanol                  | 30 days/52°C  | A950          | +        |   |
|                            | A130                | -             |      |   | Ethyl acetate            | 180 days/77°C | A950          | +        |   |
|                            |                     |               |      |   |                          |               | A130          | +        |   |

#### Chemical Resistance, Rating: + Resistant –less than 2% change in weight and dimension, less than 5% change in mechanical properties.

| Ethylene diamine    | 30 days/100°C  | A950                       | _    |   | Lead free gasoline   | e 30 days/121°C    | A950    | 0    |   |
|---------------------|----------------|----------------------------|------|---|----------------------|--------------------|---------|------|---|
|                     | 180 days/23°C  | A950                       | +    |   | (petrol) + 10% met   | thanol             |         | B950 | 0 |
|                     |                | A130                       | 0    |   |                      |                    |         |      |   |
|                     |                | A625                       | +    |   |                      | 90 days/121°C      | A130    | -    |   |
| Ethylene glycol (50 | 0/50)          | 30 days/50°C               | A950 | + |                      | 90 days/93°C       | A130    | 0    |   |
|                     |                |                            |      |   |                      |                    | A625    | +    |   |
|                     | 30 days/121°C  | A950                       | 0    |   | Gasoline (petrol)    | 30 days/121°C      | A950    | +    |   |
|                     |                | B950                       | 0    |   | w/70/30 heptane/te   | oluene,            |         | B950 | + |
|                     |                | C950                       | 0    |   |                      |                    |         |      |   |
|                     |                | A150                       | -    |   | copper ion, t-butyl- | -hydro-            |         |      |   |
| Fluorinert® FC-70   | 1 day/215°C    | A950                       | +    |   |                      |                    |         |      |   |
|                     |                | A130                       | +    |   | peroxide             |                    |         |      |   |
|                     |                | C130                       | +    |   |                      | 40 J (500 <b>0</b> | 1 1 0 0 |      |   |
| Formic acid (80%)   | 30 days/104°C  | A950                       | +    |   | H-FCKW 123           | 10 days/50°C       | A130    | +(1) |   |
|                     |                | A625                       | +    |   |                      |                    | 0130    | +(1) |   |
|                     | 270 days/104°C | A950                       | 0    |   |                      |                    | A530    | +(1) |   |
|                     |                | A625                       | 0    |   |                      |                    | C150    | +(1) |   |
|                     | 455 days/104°C | A950                       | -    |   |                      |                    | C810    | +(1) |   |
| Fuels:              |                |                            |      |   |                      |                    |         |      |   |
| Fuel C (ASTM D47    | 71)            | 30 days/121°C              | A950 | + |                      |                    |         |      |   |
|                     |                |                            |      |   |                      |                    |         |      |   |
| 50/50 iso-octane/to | oluene         |                            | B950 | + |                      |                    |         |      |   |
|                     |                | C950                       | +    |   |                      |                    |         |      |   |
|                     | 90 days/121°C  | A130                       | 0    |   |                      |                    |         |      |   |
|                     | 00 44,0,121 0  | 1100                       | 0    |   |                      |                    |         |      |   |
| Fuel C + 20% met    | hanol          | 125 davs/60°C              | A130 | + |                      |                    |         |      |   |
|                     |                | · · · · <b>,</b> · · · · · |      |   |                      |                    |         |      |   |
|                     |                | A230                       | 0    |   |                      |                    |         |      |   |
| Fuel C + 20% etha   | anol           | 125 days/60°C              | A130 | + |                      |                    |         |      |   |
|                     |                |                            |      |   |                      |                    |         |      |   |
|                     |                | A230                       | 0    |   |                      |                    |         |      |   |
| M-85 fuel           | 20 days/121°C  | A130                       | -    |   |                      |                    |         |      |   |
| Lead free gasoline  | e (petrol)     | 30 days/121°C              | A950 | + |                      |                    |         |      |   |
|                     |                |                            |      |   |                      |                    |         |      |   |
|                     |                | B950                       | +    |   |                      |                    |         |      |   |
|                     | 90 days/121°C  | A130                       | +    |   |                      |                    |         |      |   |

## **Radiation Tolerance and Shielding**

## Properties of Liquid Crystal Polymers (LCP)

## Linear Energy Transfer (LET) of High Energy Protons in LCP



LET as a function of depth for 1 MeV protons in Vectra LCP.



LET as a function of depth for 3 MeV protons in Vectra LCP.

| Proton Energy,<br>MeV | Fluence in<br>MEO<br>(#/cm² /day,<br>Barth, 1997) | Range in<br>Vectra LCP<br>(µm) | Range in<br>Copper<br>(µm) | Range in<br>Aluminum<br>(µm) | Range in PET<br>(µm) |
|-----------------------|---------------------------------------------------|--------------------------------|----------------------------|------------------------------|----------------------|
| 10                    | 10 <sup>9</sup>                                   | 1640                           | 468                        | 1127                         | 1574                 |
| 5                     | 10 <sup>10</sup>                                  | 468                            |                            |                              |                      |
| 1                     | <b>10</b> <sup>12</sup>                           | 29                             |                            |                              |                      |
| 0.1                   | 10 <sup>13</sup>                                  | 1                              |                            |                              |                      |



Source: Linden Photonics calculations using models developed by Dr. Barney Doyle, Sandia Laboratory.

#### Range of 10 MeV Protons in Copper, Aluminum and LCP and relative weights for equivalent shielding power

(Average NASA payload cost \$20,000/ lb) 13 mm LCP A Cu 2.3 3.04 4.16

Source: Linden calculations using models developed by Dr. Barney Doyle, Sandia Laboratory

#### Tensile modulus and strength of LCP before and after exposure to 1 Mrad proton radiation

| Non-<br>irradiated<br>Sample | Young's<br>modulus<br>(psi) | Yield<br>Stress<br>(psi) | Area (sq in) |
|------------------------------|-----------------------------|--------------------------|--------------|
| 1                            | 1006953                     | 34651                    | 0.00241      |
| 2                            | 1059685                     | 26121                    | 0.001612     |
| 3                            | 1146953                     | 27002                    | 0.00137      |
| 4                            | 959259                      | 39352                    | 0.001512     |
| 5                            | 1247600                     | 47291                    | 0.001827     |
| AVG                          | 1084090                     | 34883                    |              |
| Irradiated<br>Sample         | Young's<br>modulus<br>(psi) | Yield<br>Stress<br>(psi) | Area (sq in) |
| 1                            | 1351201                     | 34123                    | 0.001108     |
| 2                            | 1376967                     | 25358                    | 0.001727     |
| 3                            | 1614286                     | 31718                    | 0.001176     |
| 4                            | 1642940                     | 42163                    | 0.001008     |
| AVG                          | 1496348                     | 33340                    |              |

## Table 4.4.1 Cobalt 60 radiationVectra A950 (% retention of properties)

| Radiation Dose                               | 250 Mrads           | 1,000 Mrads          | 2,500 Mrads | 5,000 Mrads |
|----------------------------------------------|---------------------|----------------------|-------------|-------------|
| Tensile strength(1)                          | 97                  | 95                   | 95          | 95          |
| Tensile modulus(1)                           | 100                 | 100                  | 106         | 106         |
| Break elongation(1)                          | )                   | 81                   | 81          | 79          |
| Flexural strength(2)                         | ) 101               | 102                  | 102         | 102         |
| Flexural modulus(2                           | )                   | 108                  | 108         | 116         |
| HDT @ 1.82 MPa(3<br><i>(1) ASTM D638 (2)</i> | 3) 100<br>ASTM D790 | 100<br>(3) ASTM D648 | 100         | 94          |

Table 4.4.1: Artificial weathering, 2000 hrs.(ASTM D2565 – xenon arc lamp, air temp. 125<sup>o</sup> C, water spray for 18 mins. Every 200 min.(% retention of properties)

Vectra A950 Vectra A130

| Tensile strength(1)  | 95 | 95 |
|----------------------|----|----|
| Tensile modulus(1)   | 90 | 98 |
| Flexural strength(2) | 95 | 95 |
| Flexural modulus(2)  | 95 | 95 |
| HDT @ 1.82 MPa(3)    | 90 | 92 |
| Notched Izod(4)      | 90 | 95 |

Source: Linden Photonics experiments at Sandia Laboratory as part of the Phase 1 effort

## Accelerated Lifetime of Thermal Bonds Between LCP and Glass

| Sample #             | Temperature ( <sup>0</sup> C) | Relative Humidity<br>(%) | Life time, T <sub>N</sub> (hours.) |
|----------------------|-------------------------------|--------------------------|------------------------------------|
| 18                   | 95                            | 100                      | 34                                 |
| 13                   | 116                           | 100                      | 5.8                                |
| 20 (surface treated) | 116                           | 100                      | 10.0                               |

## This yields an activation energy of 1.06 eV and a bond life at room temperature of 15 years

Source: Linden Photonics Phase 1 experiments under ARMY STTR

## Low Cost Manufacturing Technology for LCP Packaging

# SMF 28 Fiber with LCP secondary buffer replaces metallized fiber.



Fiber feedthrough ferrules that use solder include the dual hermetic feedthrough in which the single fiber on the end is used for internal alignment and the second ferrule provides a hermetic seal.

Commercial Optoelectronic Packaging is a \$2 billion market largely due to expensive hermetic packaging



Patent Pending LCP Clad Fiber Excess loss at 1550 nm = 0.02 dB/km



6/15/2004

## **Ultrasonically Bonded Package**

**Patent Pending** 



## Laser Bonding of LCP Cap





#### Top view of LCP cap laser bonded to glass substrate

Source: Laser bonding experiments by Speedline for Linden Photonics Phase 1 ARMY STTR.

## **Partnerships**

- Rockwell Scientific Dr. Jeff DeNatale, Supply MEMS Devices
- Sandia National Laboratory Dr. Barney Doyle, Radiation Testing
- Speedline Inc., Dr. Gerald Pham-Van, Develop LCP Laser Bonding Equipment
- University of Massachusetts Professor Jayant Kumar, Intercalation Experiments

## Acknowledgements

We acknowledge the help of Professor Jayant Kumar and Dr. Ram Ramaswamy, University of Massachusetts, for TGA and DSC measurements, and Dr. Ken Gilleo and Dr. Gerald Pham-Van of Speedline for laser bonding experiments.